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COMPARISON OF FOUR METHODS FOR AGGREGATING
JUDGMENTS FROM MULTIPLE EXPERTS

by
Jane M. Booker and Richard R. Picard
Statstics Group, MS F600
Los Alamos National Laboratory, Los Alamos NM 87545

I. INTRODUCTION

This report describes a study that compares four different methods for aggregating
expert judgment data given from multiple experts. These experts need not be a random
sample of available experts. The experts estimate the same unknown parameter value (c.g.,
a failure rate or a probability). Their estimates need not be a representative set of sample
values from an underlying distribution whose mean is an unknown parameter, 6.
However, it is desired to combine the experts' estimates into a single aggregaticn estimate
to reflect their amount of available knowledge about the unknown parameter.

Many different aggregation estimators and methods have been proposed in the literature
(Meyer and Booker, 1991). However, few have been used, tested, or compared. Four
different methods are chosen for this study which have been used or proposed for use in
NRC studies. The set represents a cross section of the various types of methods.

The results of this study do not indicate the use of any one method over another.
Methods requiring minimal decision maker input are sensitive to the biases in the experts'
responses. these methods, there is no niechanism to adjust the experts' estimates to
account for any known biases in the expert population such as optimism or pessimism.
The results of this study indicate that these methods tend to perform poorly in all but the
most ideal cases. Conversely, methods requinng extensive decision maker inputs are
sensitive to misspecification. These methods perform poorly unless complete information
is known about all the experts. That is, the decision maker's input parameters must nearly
cqual the ac.ual values.

This report is divided into eight sections as follows: The four methods are described in
the second section. The third section contains a description of the example from NUREG
1150 that is used in the study. The fourth section is a preliminary examination of the first
and most complex method. This investgation examines the different parameters and
includes an investigation on the effects on the aggregation parameters of the correlation
structure. ‘(o compare the methods, an underiying set of actual paraineter values was
established. The set is described in the fifth section. The sixth and se -enth sections
describes the design of the computational runs made in the sensitivity study and in the
simulations. The sensitivity study consists of a set of calculations that compares u.ree of
the methods run on similar cases. Two simulations runs are designed to investigate the
second and fourth methods in separate analyses. Section VII ends with a description of the
measures used to com?m the methods with a set of actual values. The results of the runs
are given in Section VIII where the performance of each method is evaluated using the
measures of comparison relative to the actual values established. The final secticn includes
the conclusions drawn from the results and a discussion of recommended uses of tne
methods. The Appendix contains the notation used in the report.



II. DESCRIPTIONS OF THE FOUR METHODS
The Lindiey and Singpurwalla (LS) Method

Lindley ai.d Singpurwalla (1986) proposed a method for aggregating expert estimates
based on norraal theory. The particular estimates they cite are component failure rates, A,
having lognormal distritutions. Therefore, the quantity, 8 = In(A), is normally distributed.
Each expert (i) states his estimates for the mean (m;) and standard deviation (s;) of his
subjective underlying (normal) distribution of 8. They assume that there is a decision
maker who will aggregate these means and variances according to his knowledge of the
experts. He must have sufficient information to estimate four different parameters for each
expert such that the expert's stated mean (standard deviation) will be adjusted (weighted) in
a predetermined direction. This direction is determined by the decision maker, and there
are no guarantees that this determination is in the correct direction (toward the actual mean).

The parameters a, B, v, and p represent a location adjustment parameter for the expert's
mean, a scaling parameter for the xpert's mean, a scaling parameter for the expert's
standard deviation, and the correlation among the experts, respectively. Experts are subject
to many different kinds of biases that affect their estimates. The scaling and location
adjustment parameters can be used to counter some of these biases (Kahneman, Slovic, ai:
Tversky, 1982). Location adjustments are useful to counter the human tendency to
underestimate probabilities of uncemmon events, to counter optimism or pessimism, and to
counter the tendency to overestimate the occurrence of extremnely rare events. Scaling
adjustments are useful to counter the tendency of huinans to underestimate uncertainty : nd
variability (Lirdley and Singpurwalla, 1986).

The decision maker's final estimate of 8 is normal with mean

h= Y Bioti(m; - o) / Y, Biotp;
i i)
and standard deviation of that mean

o =[ ] ]'”2

i.)

where o) are the elements of the matrix I-! such that the matrix £ has off diagonal elements
ajj = pij (Oii ojj)m and diagonal elements oj; = (v si)2. This result is developed and labeled
Tl!worem 1 in their paper.

The final estimate is in the general forn of a we.ghted mean. The other parameters
combinc as weights for the ex ' mean estimates. This structure is important later on in
comparing the LS method to mci hted mean method.

Three assumptions are required for this theorem. First, the experts' estimates of the
stundard deviation, (s;), must provide no information on 8. Second, the decision maker's
pnior distribution on 6 is effectively constant, implying that the decision maker's knowledge
of J is weak prior to viewing the experts' estimates. Third, the distribution of the expents'’
means, conditioned or their stated standard deviations, is a multivariate normal with each
mean, mj, having a mean B;0 + aj, standard deviation of a;sj, and correlation pjj between m,
and m;. In addition, because the correlations and the y values are determined by the

decision maker priot to or without knowledge of the experts’ estimates, the L matrix may
not e invertible. This method requires that it be invertible.



It may be very difficult to satisfy the normality assumptions in applying this method to
~.ry often what little data exists (including expert estimates) does not

support normality (or lognormality). Expert estimates often indicate multimodal
distributions (Booka and Meyer, 1988), and it can be difficult to justify any distribution
type when there are five data points or less . Lindley and Singpurwalla cite one of the few
cases where a lognormal distribution may apply. It should be noted that the simulated data
chosen for this study follows the correct distribution assumption, therefore, providing a
best case for the LS method. The effect of non normality may or may not be severe
drawback. Sensitivity to this assumption is not examined in this study. Other features of
the method regarding its use are discussed below.

This method addresses the issues of correlation among experts and characterizing
uncertainty in the experts’ estimates. Many methods, including some used in this study, do
not consider the correlation issue. One reason for that is because corrlations among
experts are difficult (or impostible) to estimate very well. Such estimation requires an
extensive and controlled study of the experts, how they solve problems, and how they
interact. Such studies are usually not practical. On the other hand, most recent methods
incorporate some estimation or handling of uncertainty. In the LS method, uncertainty in
the experts' esunmesnscham:mzedbymcvamnce.s prowdedbyth&:gens

However, this method is difficult to use because of detailed input req from the
decision maker. In speaking with Singpurwalla, we found that he was unaware of any
actual use to date. In addition, a literature search indicated five citations of the LS paper but
no examples of actual use. This was discouraging because there was no guidance on how
decision makers should estimate the four sets of . In our experience (Meyer and
Booker, 1991), decision makers do not have the knowledge required to accurately estimate
these parameters. In using this method, they are forced to provide a set of values for all the
parameters using little or no information. In addition, the results of this study will indicate,
conclusions caa be very sensitive to the decision maker’'s parameters.

The Self Weights (SW) Method

The second method was orev:ously used in applications involving aggregating expert
estimates to determine pmba ilities and characteristics of seismic events (Bemreuter, et al.,
1989). The aggregation estimator is a weighted mean of the estimates given by the experts.
The weights are determined by the experts themselves and represent the experts'
evaluations of their own levels of expertise It is not apparent from the report whether or
not this self evaluation is done consideriny, ‘he expert's level relative to colleagues or
relative to some absolute scale. Atany rate, the weights are chosen from a numerical scale
of integers, 1-10, where 10 is the highest level of expertise. The analyst then normaiizes
the weights for the experts.

The report did not specify any corres ing variance for this weighted mean.
Consequently, the most basic question of interest (whether the resulting interval formed
from the nmwd mean and aggregated uncertainties covers 6) cannot be evaluated. In
the section on modifying the methods for the simulation study, the variance for the
weighted mean is found by uung the statistical theory.

is method lacks several features of the first method. There is no variance specified
for the aggregation estimator, there is no mechanis.n for handling expsn correlation, and
there is no provision made for the ex Eem to provide uncertainties on their estimates.

Unlike the first method, this method makes no assumptions on the data, and the analyst
does not have to estimate any parameters to do the aggregation.

It is easy to criticize the use of the self weights in this method. What little evidence
exists supports the cognitive theory that experts cannot evaluate themselves (or even
others) very well or consistently and that different experts' ratings do not agree very well



(Kahneman, et al., 1982). Even one of the report authors admitted that asking experts for
self weights was not a good idea (Mensing, 1990).

The Equal Weights (EW) Method

The third method was taken from two reports (McCann, et al., 1988; McGuire, et al.,
1989) by the Electric Power Research Institute (EPRI), which used expert estimates to
characterize seismic eventr and probabilities. In the first report, a weighted mean was
chosen for the aggregation estimator. Because the authors f2lt that the weignts were chosen
in an arbitrary manner, the second report recommended weighting all experts the same.
Therefore, this method is used as an equal weights method.

The standard deviation used in the report is a composite formula senting two
sources of variation. The first is an average of the varia..ces provided by the experts. The
second is the variation of among experts' estimates. The variance is the sum of these
two sources

02-%2 s?+;%2(mi-(z m-./n))2 :

This method lacks some of the features of the first method. There is no mechanism for
handling expert correlation. No location or scale adjustments of the experts' estimates
(similar to the LS method) are possible. The experts provide estimates of uncertainty on
their mean estimates through the values of s;2. However, this method does not require
assumptions on the data, and the analyst does not have to estimate any parameters to do the
aggregation.

Equal weights is a commonly used method (Seaver, 1978; Winkler, 1986). The
rationalization for its use stems from the usual state of insufficient knowledge necessary to
specify unequal weights. Because this method has had some usage, an equally weighted
mean 1s a good candidate fcr inclusion in this study.

The Method of Empirical Distributions (ED)

A final method was added to the study that was based on aggl}l:%eaﬁng distributions
provided by the experts rather than aggregating single estimates. distributions are
elicited from the experts themselves and nt the uncertainty that the experts have
conceming the quantity being estimated. elicited values can be ranges, pescentiles,
means, or any set of values that can be translated into a camulative empirical probability
distribution.

One application of this type of elicitation is found in the NUREG 1150 study (US
NRC, 1989), and this was the method used on the example (Section IIT) chosen for this
study. Other advocates of this of approach are Meguer and Booker (1991),

An advantage of this approach is that an entire distribution is obtained that represents
uncertainty without assuming a particular distributional form and without relying on
variance estimates. Studies have shown that experts are inore comfortable and more adept
at estmating ranges and percentiles than they are at variances (Meyer and Booker, 1991).
The analyst uses simulation techniques to combine the distributions, avoiding the
difficulties of estimating parameters. However, if the distributions are combined using a
weighting scheme, the analyst must determine what weights to use. Another choice that the
analyst makes is the type(s) of aggregation estimates to use. The mean, median, variance,
and percentiles of the aggregation distribution can be used to summarize the data. Some
analysts prefer the median as an aggregation estimatcr because experts often estimate a
median rather than a mean of their distribution of values (Kahneman, et al., 1982). This
method allows the use of the median as an aggregation estimator. Therefore, this method is



relatvely to use for both the experts and the analyst, it requires no assumptions on the
data, it ides different types of aggregation estimates, and it characterizes uncertainty.

A disadvantage is that no mechanism is readily available ¢ account for correlation
among experts or any location and scale adjustments on their estimates. However, it is
possible to include calculations in the aggregation process (in the simulation) to include
correlation. Another disadvantage is that the various values (percentiles, ranges, etc.)
clicited from the experts must have the appropriate interpretation. If an expert is unfamiliar
with ntiles and is asked to give 5% tls and 95% tle value, he may be giving a range
of vajues that represents only a or 40% interval. Extreme care in the elicitation
process is required to ensure that the expert is properly constructing his empirical
distribution of values.

II. THE EXAMPLE USED IN THE STUDY

The NUREG 1150 study elicited many data sets from multiple ex regarding many
physical parameters and events. Because the Lindley and Singpurwalla (LS) method was
the most complex method, an example data set was sought that fit into its structure.
Simplified structures corresponding to the other me can be viewed as "subsets” of a
more complete specification. An example was needed that estimated a single target
quantity, preferably a failure rate, that was distributed normally or lognormally. An
example that used information from several experts was desired. Also, the experts had to
provide some estimates of uncertainty on their failure rates either in the form of
distributions, or ntiles, or standard deviations. In A ix C, Volume 2 of
NUREG/CR4550, (Wheeler, et al., 1986), the failure rate for a specific valve rupture
scenario at the Sequoyah plant was estimated by five cxfpa't& The experts provided
cumulative distribution functions and percentile values for the log (base 10) of this failure
rate, A.

Two conversions were necessary on this raw data to make it applicable to the LS
method. First, two experts provided estimates in terms of fallures/year, and the other three
used failures/hour. All were converted to failures/hour. Second, the raw data was in the

form of logsé\. The LS method uses In(A). Therefore, the data was translated to this new

logarithm . Table I gives some percentiles and their translations.
TABLE ]
PERCENTILE ESTIMATES FROM EXPERTS' DISTRIBUTIONS
0 -27.6 -25.2 -29.8 -14.4
1 -25.9
5 -25.3 -25.2 -21.8
10 -223
50 -20.5 . -19.2
80 -229
90 -19.1
95 -20.9 -16.6
99 -17.7 -20.7 -17.8 -20.6
100 -18.4 -24.1



Using these percentiles and normal theory, the mean and standard deviation were
estimated as given in Table I1.

TABLE I
EXPERTS' ESTIMATES FROM THEIR DISTRIBUTIONS
tard deviari
A -20.5 1.3
B -22.5 1.4
C -23.8 1.4
D -22.9 0.7
E -19.2 1.6

A graph of the experts' distributions is given in Figure 1. The values used in this study
are based upon the values in Tables I and II. It is not uncommon to find that the expents'
means are significantly far apart from each other, when gauged by their stated standard
deviations. possible explanation of this effect is the commonly encountered human
bias of underestimating uncertainty (Kahneman, et al., 1982) which appears in
misspecification of percentiles (an estimated 9Cth percentile value should have been a 70th
percentile). Another possible explanation is that the large separations in the means are due
to genuine differences in opinions.
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Figure 1: Experts' Empirical Distributions



IV. PRELIMINARY INVESTIGATION OF THE LS METHOD
Investigating the Parameters

Because the LS method has the most complex parameter structure, an initial
investigation was made to determine the general effects on the aggregation mean and
variance by changes in the ters. It is noted that using the mean and standard
deviation formulas (from 1) produces the following general relationships:

1) If all as are identical, increa: 1g a decreases u (the aggregation mean) by that
amount, out do not affect o.
2) Changes in B rescale both u and o by that amount. If all s are identical, doubling B
halves u, and halves o.
3) Changes in yrescales o, but does not affect p . If all ys are identical, doubling y
doubles o.
If the set {aj, i, %) is not the same for all experts and different parameter changes are
made for each expert, the relationships are not so straightforward,

The effects on . and o by changing the correlation structure were not readily apparent

from their formulas or from calculations. A more in-depth investigation follows.

Investigating the Correlation Structure

Because the LS method contains a unique feature specifying the correlation structure
among experts, a separate investigation attempted to understand the effect of this structure
on the standard deviation of the aggregation mean.

A simplified structure of the LS correlation matrix, P, based on a common correlation p
among all experts, has the following form

P=pllt+(1-p)I

where superscript ! is the vector transposition, ] is the vector of all 1s, I is the identity
matrix, and the off-diagonal matrix elements are all equal to a common value p. This
fhommon value of p is a special case for this investigation. In general, all pj;s may not be
c same.

Some initial calculations were made using the LS method where the correlation matrix
was changed while the other parameters remained fixed as:

all a = 0.0,

alp = 1.0,

all y= 1.0,

all expert standard deviation estimates, s = 1.0,

and expert mear estimates, m = (-20.5, -22.5, -23.8, -22,9, -19.2) (Table I).
These parameter values correspond to the case where the experts' mean estimates are not
adju:lt:g for any location or scale biases, and their standard deviation estimates are not
rescaled.

The LS standard deviation values, for this case, increased as the value of p increased as
indicated in Table IlI. This pattern can be explained using basic variance rules where an
increasing positive correlution among variables increases their combined variance.



TABLE III :
CORRELATIONS AND LS STANDARD DEVIATIONS FOR CONSTANT EXPERT

VARIANCES
- i«
0.00 0.45
0.10 0.53
0.25 0.63
0.50 0.77
0.75 0.89
0.90 0.96

For the cese where the expert standard deviations are not all equal, the LS standard

deviation need not b a monotonic function of p. To most decision makers this phenomena
is counterintuitive. For the case in Table IV, using the standard deviations from the
NUREG 1150 example in Table II, § = (1.3, 1.4, 1.4, 0.7, 1.6}, the LS standard

deviation increases for increasing values of p until p = 0.5 and then it decreases.

TABLE IV

CORRELATIONS AND LS STANDARD DEVIATIONS FOR DIFFERING EXPERT
VARIANCES
- 0
0.00 0.49
0.10 0.57
0.20 0.62
0.40 0.6Y
0.50 0.70
0.60 0.69
0.80 0.58
0.90 0.45
0.95 0.33
0.99 0.15

The reason for this changing relationship can be found in the formula for the variance in
the LS method:

o = @izg)!

where the (i,j)th element of I is pjj ¥ s; vj sj. Following the structure of the correlation
matrix above, £ can be expressed as

L=p ("D (1*9'+ (1-p) D2

where y*3 is the Hadamard product of y and § and D is a diagonal matrix whose elements
are (y*3)i. The inverse of T has this same form,



£1=(1p)! (D2- pl14(n-1)p ] D2 (*) (4*9'D2).
Thus

2 |2
1 Bi 4 B
SR 2 [ - T {2 'ﬁsi}

which can be rewritten using 8; = B / ¥s; as

g1 e D 5
gz " iZ(s..s) T §>0

where
5=3 8n

and n is the number of experts. If p <-1/(n-1), then the correlation matrix is not positive
definite, It is possible for experts to be negatively correlated. Not much attention is paid to
this posibility because negative correlation is difficult to exﬁllain and interpret. A decision
maker could mistakenly construct a correlation structure which is not positive definite.

Assuming the variance matrix is positive definite, then differentiating ike inverse of the
variance with respect to p gives

ATB_ (D) 2, @D 32
® (12 " (1Hn-Dp)?

where
Sp= T @3 /1)

which is the "sample variance” of the (8;). The Jdifferentiation above corresponds to
finding the maximum uncertainty.

For the case where the §; are all equal to 1.0 (e.g., where %, s; and B; are all 1.0), then
Ss2 is 0.0. These conditions correspond to Table IT calculations where the standard

deviation was an increasing function of p. Because the (3} depends on the expe:t's
standard deviatioas, (si}, there is no reason to expect this to occur.
The expression for the LS variance is

o= @T'g)"
and it reduces, for By/siy; all equal to one, to
o2=[1+(n-1)p]/n .
Substituting various values for p and n=S5, this expression gives the variances (and standard

deviations) as in Table 1I1.

For the case where all i and B; are 1.0, but the s; values, as given in Table II, are {1.3,
1.4, 1.4, 0.7, 1.6}, then the variance expression becomes



D, a3
*=Cipy 5 Trmp) )

For this case the values of 5; are (0.8, 0.7, 0.7, 1.4, 0.5}, giving a § mean of 0.9 and 5
standard deviation (S3) of 0.3. Using thes.: values for thc various correlations, the above
expression for the LS variance gives the those standard deviations listed in Table IV. The
mathemetical development explains how the unexpected pattern in Table IV occurred for the
types of cases in that table.

The expressions developed in this subsectica help in the understanding of how the
correlation structure relates to the LS standard deviation. Earlier in the method descriptions
section, some of the relationships of the other parameters to the LS mean and variance were
mentioned. The p of this report is to go beyond these parametric relationships and to
address the issues of comparing this method to a set of actual values and of comparing its
performance to that of other methods.

V. THE VALUES USED IN THE STUDY

In the sensitivity studies and simulation designs described below, parameter values are
estimated in each of the four methods. To compare the performance of each method, some
basis for comparison is required. In this section, a set of "actual” parameter values is
esablished. In the following sections, the abilities of the methods to recover the actual log
failure rate are examined over a range of circumstances, called "cases".

The actual log failure rate, 0, is set to -20.0, well within the range of expert-to-expert
values (Table II). The actual parameters for the LS method, a, B, v, and p, are given in
Table V. The values for a, which corrects for location or shift bias, were chosen to range
from -2.0 t0 2.0. This range covers four orders of magnitude. The B values also change
the expzrt's means in combination with the a values. Values for p were chosen across a
narrower range so thut the combined a, p effects would not produce severe changes over

many orders of magnitude. The y values were chosen to be greater than 1.0 for inflating
the standard deviations, countering the common underestimation of the variance. Were the
decision maker to be omniscient and know these actual values, the LS aggregated opinion

would have a mean equal to0 -20.0 and the perceived standard deviation ¢ would equal the
actual standard de-riation. 3

TABLE YV
ACTUAL VALUES MIXED VALUES FOR q, 8, and y

Parameter A B g D E
a 2.0 0.0 2.0 1.0 1.0
B 0.925 1.4 1.3 1.1 1.0
Y 2.0 1.5 1.75 2.5 1.25
m -20.5 -28.0 -24.0 -23.0 -19.0
] 1.3 1.4 1.4 0.7 1.6
where
mj = Bl‘o + Q@

and pij = 0 for all inj .

10



The clements of the actual variance-covariance matrix, X8, are [oij] = pij i j Si §j. Using
the actual Z, the actual B vector, and the formulz for the the variance

P 1
(@ (aar(zl)- 1 nl

the best case perceived mean has a standard deviation, o8, of 0.81.

In the application of the LS method, the decision maker estimates the 1our sets of
parameters prior to receiving the experts' mean and standard deviations. His values for
these parameters could be the the same across all experts. A decision maker who is not
well informed about differences “etween his experts may be prone to this. The actual
values could also be equal across the experts, but experience (Booker and Meyer, 1988)
indicates that this is very unlikely. Therefore, some of the sensitivity study calculations
(runs) were made using identical values (decision maker's estimates) for a, B, and v,
across all experts. For these runs, comparisons to actual parameter values that are equal
across experts were made using the values in Table VI below.

TABLE VI
EQUAL ACTUAL VALUES FOR ¢, 8, and y

2 =

Parameter 1 4 3
a 1.0 1.0 1.0 1.0 1.0
B 1.2 1.2 1.2 1.2 1.2
Y 1.5 1.5 1.5 1.5 1.5
m -23.0 -23.0 -23.0 -23.0 -23.0
s 1.3 14 1.4 0.7 1.6
and pij = 0 for all i»j.

The values for a, B, and y were chosen from values in Table V. Specifically, the
values are in the middle of the ranges listed in Table V. They should, therefore, be of the
order that a decision maker might choose.

VI. THE SENSITIVITY STUDY

The main purpose of the sensitivity study is to quantify the effects that an imperfect
decision maker has on the aggregation process. Three dit*erent methods (LS, SW, and
EW) are directly compared in this study by examining the effects of the decision maker's
parameter estimates on t:¢ final aggregation mean and variance results, compared to the
actual values established.

The Lindley and Singpurwalla Method
The first sensitivity study focused on the features of the LS method. The basic idea

behind the decision maker estimating all the parameters is so that he can adjust the experts'
mean and standard deviation estimates in an attempt to estimate the actual means and

11



standard devistions. This idea translates to the ideal situation where the decision maker's
estimates of the parameters transforms the experts’ estimates (means and standard
deviations) into the aggregated mean and its variance. The runs were set up such that when
the decision maker specified the proper parameters, the resulting value of the aggregation
mean estimate, u, and the perceived variance would be the specified actual values, 6 (=-
20.0), and the corresponding variance (=0.66).

Another way of looking at this ideal case is by recognizing that the estimates provided
by the experts, m, are a function of 6, the actual a and B parameters, and some random
error deviation, e,

m=ql+f20 +¢ .

This error is distributed normally with mean O and with a variance/covariance matrix whose
clements, L;2 = pii* %* 5* mm based on the actuai values. Recall that the LS
aggregation mnl“ms the following form

. f'r'@-a)
g'p

Rather than designing a simulation constructing expert estimates based on the above
formulas with the random error component, the aggregation mean and variance can be
found using a normal distribution that is not conditioned on this random error component.
This unconditional distribution based on the Theorem 1 ( Lindley and Singpurwalla, 1982),
gives the aggrepation mean estimate, i, distributed normally with mean

5@t - o +8%)
8'z’s

and variance
pr'rr's
(3 'af

where the superscript "a" denotes the actual vector or values of the parameters.

For the ideal case, when the decision maker estimates gmg®, f=3®, y=y® and [pjj]=[p;®].
the aggregation mean reduces to the value of 6 and the variance of that mean reduces to the
familiar variance ld:.xl:muion of 1/(8'z-18) from Theorem 1 (Lindley and Sin?urwalln,
1986). For noni cases, the aggregated mean and standard deviation can differ
substantially from actual values.

The actual values for the ters used in the sensitivity studies are established using
the values from the example in tables I and Il as a guide. The values for the decision
maker's estimates of the parameters are given in the section below describing the design for
the sensitivity study runs.

The Self Weight Method

To compare the results of the other methods to the LS method, the unconditional
distribution can be structured to resemble the self-weight aggregation method used by
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Lawrence Livermore National Laboratory. Therefore, some of the LS runs made using the
unconditional distribution with the vanous combinations of the LS parameter estimates also
pruvide an aggregation mean that has the self-weight form

u=2 wim;

where the w; are normalized (weights sum to 1.0) self weights provided by the experts and
m; are the estimates provided by the experts. Although the original report did not specify
one, the variance of this weighted mean could be estimated by the standard formula for the
variance of a weighted mean with normalized self weights, wg,

o?(4) = wiZ(m)w, ,

where £(m) is the variance matrix of the mean, having the form of a diagonal matrix with
(si2) elements. Here £(m) is a general notation for variance to distinguish it from the LS
variance, £

In the LS method if the decision maker sets parameter g = (), then the uncondisional
aggregation mean estimator has the form of the weighted mean estimator where tlie weights
are

S 4o
ZM‘Bj

where oil are the elements of £-1. The variance for the aggregation mean is the
unconditional variince formula

Of the LS cases, the ones where there i3 no bias correspond to the weighted mean
cases. Therefore, both methods can be divectly compared using these common cases.

The Weighted Mean Method

The weighted mean method originally proposed by EPRI, was later modified in a
second report (McGuire, et al., 1989) such that all the experts were given equal wei h
Themfon. this modification was chosen for use in the study and com l‘l’mfumson of met

the EPRI method a representative of the equal weights me for aggregnting

mul%g estimates.

e use of equal weights is a popular method for gating expert estimates (Seaver,
1978; Winkler, 1986). One of the main arguments for choosing equal weights is that the
analyst or decision maker doing the aggregating often has no information or no reason for
choosing the weight of one expert over another. Another reason stems from the fact that
minor chunges in weights have little impact on the resulting weighted mean; however it can
affect the perceived variance (Meyer and Booker, 1991).

In the cases run using the unconditional distriution, only one combination of the LS
arameters corresponds to the equal weights case. 1...o uie results for this method are
imited to only that nne case. However, the comparison among the three merhods is still

feasible even if there is only one case for the equal weights method.

That one case is wherealla = 0, = 1, ;= 0 for iwj and y = 1/sj, making E = I such
that the weights in the aggregation mean are equal. This case corresponds to the situation
where the decision maker makes no location or scale adjustments to the experts' means,

13



and he happens to select 4 values that rescale their stated variances to 1.0. These parameter
choices are not very likely nor do they have a reasonable foundation except to achieve the

goal of weighting the experts equally.

VIL THE SIMULATIONS
The Empirical Distribution Method Simulation

Using the empirical distributions of the experts' estimates from Table I, a simulaton
was designed to examine the use of this inethod. This simulation doe_ not have a direct
::hmnecﬁon to the other three methods nor to the unconditional sensitivity studies comparing

em.

The empirical distributions of the experts are based on a set of five estimates from the
experts: an absolute minimum estimate (cumulative probability of 0.0), an absolute
maximur estirnate (cumulative probability of 1.0), a middle value (best guess), an upper
tail value, and a lower il value. There is an ongoing debate about what percentiles should
correspond to the two tail estimates and middle estimates (Meyer & Booker, 1991). Some
suggest that the expert's best or middle estimate represents a mean value; others suggest
that it represents the median (50th percentile). Some suggest that the tail values represent
the 5th and 95th percentiles while some studies suggesi that the tail values represent the
40th and 60th percentiles. The simulation is designed to investigate the effects of changing
these percentile levels for the tail and middle values. In other words, the simulation
examines how misspecification of the percentile levels affect the results,

The Self Weight Method Simulation

Another simulation was designed to investigate the effects of changing the experts’
weights that was not tied to the LS method. In the original application of this method, the
weights were integer values from 1 to 10. These values were then normalized so that the
experts' weights summed to 1.0.

In this simulation, the weight values (1 to 10) were simply generated from two different

robability distributions. The first was a skewed distribution (Figure 2) which placed

er probabilities on the higher ratings (6-9) and very little probability on the lower
ratings (1-4). The reason for this comes from the premise that most ex should be able
to rate themselves according tr) their expertise, which should be on the high side of the
scule. However, there many other factors to consider concerning self weights such as the
expert's own degree of confidence, his actual level of expertise versus his perceived level,
and his expertise relative to others. All of these factors make it difficult to specify a
distribution for the weights, ially with no guidance from the literature. To provide an
l(lll:tpmntig. the second probability distribution was a uniform on the integers 1 to 10

igure 3).
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VII. DESIGN OF THE SENSITIVITY & SIMULATION RUNS

There were five different sensitivity study and simulation runs made using three
different FORTRAN codes. Using the first of these codes, the equal weight, self weight
and LS methods were compared using the same cases and the same actual values. The
cases and sets of actual values f three different rrpes or runy: (1) equal actual values
(Table V1) compared to the decision maker's equal estimates of the parameters, (2) mixed
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actual values (Table V) compared to the decision maker's equal estimates of the parameters,
and (3) mixed actual values (1 able V) compared to the decision maker’s cstimates based on
small deviations from the actual values . Using the second FORTRAN code, the self
weights for that method were generated from both the uniform and skewed distributions.
Using the third FORTRAN code, the empirical cumulative distribution functions of the
experts were used to form an aggregate mean and median estimators. These five different
runs are further described below.

Run 1 - Equal Values

There were 301 cases run involving the EW, SW, and LS methods. The parameter
values used are in Table V1, and the cases are constructed from combinations of the
parameters in Table VII (the 300 cases equal the possible combinations of five a values,
five § values, four y values, and three p matrices) plus the single case for equal weights.
Here the actual values for the parameters are constant across experts, and the decision
naker estimates the same values for all the experts (Table VII).

TABLE VII
THE DECISION MAKER'S EQUAL ESTIMATES FOR . 8, v, and p
Pammeter
o A X 2L
LS Cases -2.0 0.8 1.0 0.0
-1.9 1.0 1.5 0.5
0.0 1.2 2.0 0.9
1.0 1.4 2.5
2.0 1.5
Equal weight 0.0 . 1.0 0.0

*=(0.78, 0.71, 0.74, 1.43, 0.64)

Thecascof a= 1.0, f = 1.2, y = 1.5, and p = 0.0 corresponds to parameter choices by
a perfect decision maker. All the other cases correspond to parameter choices of an
imperfect decision maker

Run 2 - Unequal Values

There were 301 cases run involving the EW, SW, and LS methods. The actual valucs
for the parameters are in Table V, and the cases are constructed from all possible
combinations of estimates in Table VIII (300 cases) plus the single cas~ for equal weights.
Here the actual values for the parameters are mixed values, and the decision maker's
estimates the same values for all the experts (Table VIII).
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TABLE VIII
THE DECISION MAKER'S EQUAL ESTIMATES FOR o, B, v, and p

Pamanieter

— L X 0L
LS Cases -2.0 0.8 1.0 0.¢
-1.0 1.0 1.5 0.5
0.0 1.2 2.0 0.9

1.0 1.4 2.5

2.0 3.0
Equal weight 0. . 1.0 0.0

*=(0.78, 0.71, 0.74, 1.43, 0.64)

Run 3 - Small Deviations

There were 300 cases run involving the EW, SW, and LS methods. The actual values
for the parameters are in Table V, and the cases are constructed from the combinations of
the parameters in Table IX. Here the experts' actual values for the parameters are mixed
values, and the decision maker estimates the same values for thie experts that are almost
identical to the actual values (Table IX). In each case, the estimate for only one parameter,
for only one expert differs from the actual values. Here, the decision maker is nearly
perfect in his estimation process — an unrealistic expectation.

TABLE IX
THE DECISION MAKER'S SMALL DEVIATIONS FROM

THE ACTUAL MIXED VALUES FOR o, B, v, and p

Pammeter A B E R E
a Cases -1.0 0.0 2.0 -1.0 1.0
.2.0 1.0 2.0 -1.0 1.0
-2.0 0.0 1.0 -1.0 1.0
-2.0 0.0 2.0 0.0 1.0
-2.0 0.0 2.0 -1.0 0.0
B Cases 1.2 1.4 1.3 1.1 1.0
925 1.2 1.3 1.1 1.0
925 1.4 1.2 1.1 1.0
925 1.4 1.3 1.2 1.0
925 1.4 1.3 1.1 1.2
y Cases 2.0 2.0 1.75 2.5 1.25
2.0 1.5 2.0 2.5 1.25
2.0 1.5 1.75 2.0 1.25
2.0 1.5 1.75 2.5 2.0

pij Cases pij= (0 .0,2r 0.5, or 0.9) for al! imj,
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Run 4 - the Distribution Self Weights Simulation

There were 1000 simulation samples run on the SW method where the weights were
generated from a skewed-shaped distribution (Figure 2) and 1000 samples from a uniform
distribution (Figure 3). The structure of this simulation did not use the LS framework.
The weights were randomly chosen values from the 1 to 10 scale according to the two
distributions. The weights were then normalized as in the original method. The weighted
aggregation mean and its standard deviation were calculated and compared to the actual
mean and variance.

Run § - the Empirical Distribution Simulation

There were 300 cases run on the empirical distribution method. These cases were
constructed using 300 different sets of expert distributions. The distributions for each
expert were formed using the upper tail, lower tail, maxima, minims and central values
given in Table X. The tail and extreme values are based on the erperts' estimates given in
Table I, and the central values are based on the experts’ estimates given in Table II.

TABLE X
VALUES FOR SPECIFYING THE EXPERTS' EMPIRICAL DISTRIBUTIONS

—Yalues A B E R E

minimum -239 -32.6 -20.0 -29.8 -24.0
lower tail -22.3 -30.3 -25.2 -25.9 -22.8
central -20.5 -28.0 -24.0 -23.0 -19.0
upper tail -19.1 -23.7 -20.6 -20.6 -16.6
maximum -17.5 -234 -17.2 -16.9 -14.0

The empirical distributions were constructed by randomly assigning percentile levels to
the two tail and the central values. The maxima and minima values anchor the distributions
at probabilities 1.0 and 0.0, respectively. Lincarly interpolating the five points forms the
empirical distributions. The percentile level for the lower tail values for each expert were
randomly assigned according to a uniform distribution on the range 0.0 to 0.30, the
percentile level for the upper tail values from a uniform ranging from 0.70 to 1.0, and the
percentile level for the central value from a uniform ranging from 0.40 to 0.60. The ranges
of the uniforms were chosen to cover the ranges suggested by various studi-s (Kahneman,
ctal., 1982). A single case is the set of five expert distributions that were tormed by the
percentile assignments made at random for the two tail and central values.

For each of the 300 cases, the five expert's distributions are aggregated forming a final
combined distribution whose (unweighted) mean, medien, variance and percentiles can be
used as summary statistics. To form this final distribution, values are sampled from the
five expert's distributions. These values are combined according to one of two chosen
aggregation estimators, the mean and the median. In other words, a sample is a set of five
randomly selected values, one from each expert distribution. The mean and the median of
the five values is calculated. This sampling was done 400 times Emeroducing a final
distribution for the mean and a final distribution for the median. values of the two
agyregation estimators (the mean and median) were taken as the central values of these two
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final distributions. Likewise, standard deviations were calculated from these two final
distributions. Probability intervals (not confidence intervals) for the perceived mean were
calculated using the percentiles from the final distributions.

Measures of Comparison

All the sensitivity studies and simulations used three different measures of comparison
to their respective actual value sets. The first two measures are simple deviations: the

aggregathon estimate for the method from the value of 6 and the estimator’s standard
deviaton estimate from the actual standard deviation

A=06-p and Ao =ol2-¢.

The value of « varies from case io case. This comparison is based on the difference
between the case-specific perceived standard deviation and the case-specific actual standard
deviation.

The third measure is based upon how well each method covered the value of 8 using

probability or confidence intervals calculated from the estimates of the aggregation mean
and its standard deviation

P{0 € p T 20} ~(@X(2) - &(-2)]

where z a percentile of a Normal (0,1) and @x(z) is the corresponding cumulative distribution
function. For example, when a 90% interval is calculated based upon the estimates for a

given method, in what percentage of the cases run does that intervai cover 8? The expected
answer should be near 90%. For each method, five different sized intervals were
calculatgcel for the 50%, 65%, 80%, 90% and 99% coverages. The results are given in the
seciion below.

VII. RESULTS
Comparison to the Actual Values for all Methods
The measures of comparison described in the previous section produced the results in

Tables XI and XII. The valuves in Table X7 are averages over all the cases. The exception
being that the EW values represent only one case.

TABLE XI

DEVIATIONS FROM THE ACTUAL MEAN (8) AND STANDARD DEVIATION (o%)
FOR THE MEANS AND STANDARD DEVIATIONS OF THE METHODS.

method/run mean deviation from @ standard deviation deviation fromg!

1.S/1 -20.1 -0.1 1.1 0.5
LS/2 -20.3 -0.3 1.7 0.9
LS/3 -20.0 0.0 1.5 0.7
SW/1 -23.0 -3.0 0.7 0.1
SW/2 -23.1 -3.1 1.0 0.2
SW/13 -23.3 -33 0.8 0.0
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TABLE XI (continued)
" mean  deviation from 8 tard deviari tevigtion from g*

EW/1 -23.0 -3.0 1.3 0.7
EW/2 -22.9 -2.9 3.7 29
SW /4 skw -22.5 -2.5 0.6 -0.2
SW /4 unif -22.5 -2.5 0.6 -0.1
ED/ S5 mean -22.6 -2.6 1.5 0.7
ED/ 5 median -22.3 -2.3 1.8 1.0

where the numbers (1-5) refer to the type of run made;
mean is the av of the 5 experts was used as the aggregation estimator;
median is the 1an of the 5 experts was used as the aggregation estimatos;
skw is self weights generated from a skewed distribution; and
unif is self weights generated from a uniform distribution.

TABLE X1l
PERCENT COVERAGES OF 6 BY 50, 65, 80, 35 AND 90 PERCENT INTERVALS
method/run X% 65% 80% 0% 2%
LS/1 9.6 15.3 21.3 27.6 41.5
LS/2 10.0 15.0 20.7 27.8 41.0
LS/3 53.0 67.0 73.0 83.0 92.3
Sw/1 0.0 0.0 13.2 21.2 53.9
SW/2 0.0 0.0 13.3 20.0 46.7
SwW/3 0.0 0.0 0.0 0.0 50.0
SW/ 4 skw 0.1 0.2 0.4 0.8 5.1
SW/ 4 unif 2.2 36 5.5 8.7 20.7
ED/ 5 mean 0.0 0.0 0.0 0.0 45.0
ED/ 5 median 0.0 0.0 93 58.7 98.3

The averaging process in Table XI requires careful interpretation, especially for the
aggregation estimators (means). For example, the LS run 1 has a very sma'l overall

deviation from 8; however, variation in the aggregation means over the 300 cases is quite
large. The highest case was -10.0 while the lowest case was 31.0. The low cases

occurred when a was the largest (2.1) (reducing u) and when g was the smallest (0.8) (also
reducing p) fur the various values of yand p. The high cases occurred when the correlation
was the highest (0.9), a was the smallest (-2.0), and p made no adjustments (1.0) for

various values of y. The SW run | cases all have the same aggregation estimator (= -23.0)).

This results from the fact that the SW cases are restricted to combinations of a, B, v, and p
such that the resulting weights are normalized. The 75 cases for the SW method, where the

weights are automatically normalized, conespond to LS cases wherep m(Qand 8 2 1. The
EW case is also restricted and misses the target mean. The standard deviation, although
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somewhat larger, is not as larze as might be expected. Recall that it is a composite of two
sources of variation that one might suspect would produce a large value.

For run 2, again the LS overall mean is on target with 6. However, again there is a
very large variation in these mean values ranging from -31 to -16. The 75 cases in the SW
method have means with a much smaller variance ranging from -22.9 to -23.3. These 75
cases again correspond to those where p =0 and f 2 1. The EW case here does have a
very large standard deviation as might be expected from the way it is calculated.

By construction, the small deviations cases (run 3) for the LS method have means that
are much less variable, ranging from -23.8 to -16.7, and their overall average is 6.
Although the variation in the 110 means applicable to the SW method is also this small, the
overall mean for these cases is nat on target with 8. These 110 cases are defined from
combinagonsof a = -1 or -2, =0.9250r 1.2, y = 2.0 and p= 0.0 or 0.5. The EW
method is not applicable here.

In run 4, where SW method wcights are generated from two different distributions
instead of being defined in cerms of the LS cases, the overall means are not on target with

0. The overall means from the two different distribudons are 1early identical, indicating
little effect from the different distribution (skewed versus uniform) used for the weights.
(This is not surprising because for any distribution witt ‘'ndependent, identically distributed
weights, the expected value of the normalized weights is 1/n. The result is equal weights
on the average. Only the variance should be expected to change.) The variation in the
means for the 1000 cases is also smail, ranging from -25.6 to -19.4 for the uniform
distribution and from -24.5 to -20.3 for the skewed distribution.

The means and medians from the 300 ED cases in run 5 both differed from the target 6.
The mean values ranged from -23 to -22 and the medians from -22.9 to -21.5, indicating
very small variation for both typ«: of estimators for run 5 cases versus the other runs.

It is not surprising that the overall means for many of the runs missed the target value.
The EW method and run § weight the five experts equally. This weighting is not
conducive to hitting the target value oecause -20.0 is not in ine center of the five experts’
estimates or their distributions. (This is not an unusual occurrence because it would be
unreasonable to expect the experts' estimatrs or distributions to be exactly centered around
the actual value.) In adJition, when there is small variatior: for the aggregation estimator,
such as in the ED method and the SW meuhod, it is difficult to hit the target value. The
methods that can consistently hit the target value, such as the LS method, are those which
cither have large variability about thc aggrsgation estimator.

Making comparisons of the overall standard deviations is not as clear cut as comparing
to the target @ because ot is based on the LS variation. Even so, the LS standard deviation
of the aggregation mean compares poorly to the target value, a®. The ED method produces
standard deviations that are about twice a8. The oaly method that consistently hits the
desired standard deviation for the various 1 ins is the SW method.

The third measure of comparison examines how well the: confidence and probability
intervals cover the targst mean. These results are in Table XII and are graphically
represented in Figure 4 (except for the EW method).
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Figure 4: Target Mean Coverages Based on Various Sized Intervals

The coverages that one would hope to achieve should be near the "desired" line.
Ideally, 2 50% interval should cover the target value of -20.0 in 50% of the cases run.
However, a decision maker using imperfect parameter values can be seriously misled as to

coverage rates. Intervals having perceived coverages of 95% often had actual coverage of
less than 50% in this study
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Even though the LS mean was very near -20.0 (Table XI), that result was obtained by
off-target high intervals cancelling off-target low intervals. Low mean values for other
methods were attributable to expert opinions being consistently pessimistic.

The results from Table XII and Figure 4 indicate that many of the methods did rather
poorly in achieving the expected coverages. Based on the results already mentioned above
regarding the target misses and the variability associated with that process, it is not
surprising that the intervals for those methods exhibit poor coverzge of the target mean.
After all, those intervals are calculated from the estimated aggregation mean and its
estimated standard deviation, and the e makes no allows.ace for the possibility that
some of the input parameters could be slightly in error, or that the experts themselves might
be imperfect as a group.

only method and simulation combination that resembies the expected coverage in
Figure 4 is the LS method for small deviations. The ED method using the median estimator
does better for larger sized intervals (2 90%). The oter coverages from run 1 and run 2
for LS are nearly identical, as are the coverages for run 1 and 2 for SW. The poorest
coverages are for the SW methcd where the weights are generated from the uniform and
skewed distributions.

Comparison to the Actual Values for Correlation Effects

The results for runs 1-3 for the LS method include three different correlation structures.
The actual values structure has off diagonal elements of the correlation matrix equal to 0.0,
3nd the casges run include this structure plus structures where these elements are equal to

.5 and 0.9.

Examining the measures of comparison for the three different correlation structures
gives the following results. For runs 1 and 2, the means and standard deviations over the
1GO cases for each correlation structure do not change as the structure changes. The
percent coverages for the various interval sizes (50%, 65%, 80%, 90%, and 99%) also do
not change with the different correlation structures.

For run 3, the means do not change, but the standard deviations increase from 0.82 for
0.0 correlation to 2.63 for correlations of 0.9. Also for run 3, the coverages for the
various interval sizes also change as indicated in Table XIII. For each interval, the
coverage for the correlation of 0.5 is approximately that listed in Table XII. However, the
coverage for 0.0 correlation is much higher, quickly approaching 100%. The coverage for
correlation of 0.9 is much lower, approaching the coverages seen in the other methods.
Therefore, when the decision maker estimates high correlation among experts (= 0.9)
when, in truth, none exists, poor coverages result even when he has correctly estimated all

iy ters s all experts except one. The extreme sensitivity of target coverage is indicated
in these results.

TABLE XIII

PERCENT COVERAGES OF ¢ BY 50, 65, 80, 95 &90 PERCENT INTERVALS
FOR DIFFERENT CORRELATIONS IN THE LS METHOD, RUN 3

decisio:_l maker's
* 0% 65% 80% A% 9%
0.0 84 97 100 100 100
0.5 52 67 78 92 100
0.9 23 37 41 57 77

*Actual correlatior is 0.0.

23



IX. CONCLUSIONS

Conclusions from the results of the three measures of comparison are mixed and do not
indicate any one method as better than the others. All methods are extremely sensitive to
hnpufeﬁesﬁmaﬁonsofﬂnpuamcmwtnﬁadﬂei:}rmsmﬁommeexm
themselves or the decision maker. Cov rates for all methods are also poor. The only
exception is when the inputs are nearly perfectly estimated, and this is unrealistic to expect.

Some interesting conclusions about the methods were found based on the features of
the methods. Four different features are worth mentioning: how the method handles
correlation, how the method handles uncertainty, what assumptions are required for use,
and what input estimations are required for use.

The LS method is the only one that specifically addresses the comrelation structure
among the experts. The difficulty here is that the decision maker, analyst, cc whoever is
aggregating the informadon must estimate that correlation structure. Studies are lacking on
how to do this estimation either in controlled or realistic environments. In the LS runs,
there is some evidence for differences in the results depending upon which of the three
correlation structures were specified.

Uncertainty in the experts’ estimates is handled in the methods by two ways. The
variance estimates elicited for use in the LS method is one way. The percentile estimates
elicited and corresponding empirical distributions in the ED method is another way. The
two weighted methods and SW) do not suggest eliciting uncertainty estimates from
the experts in eithcr form. This is a shortcoming of these methods, as situations requiring
only a point estimate are rare. Uncertainty is present in the elicited data, and this
uncertainty should be represented in some way.

Problems arise in using methods that rely on restrictive assumptions on the data. In
genenal problems arise from certain propertics in the data. For example, there is a basic
problanwithusinganymﬁsdulmchnﬁefouml sis that requires the data t0 be
independently gathered, identically distributed sample points from an underlying
population. It can be argued that expert judgments may not be an independent or identically
distributed le from a population. However, this independence applies to the method
of sampling and does not pertain to the observed values. As a consequence, independence-
based inference about the population from the judgments may not apply. Another example,
the common use of the central limit theorem (which states that the sample mean is
asymptotically aormal) may not be appropriate because the underlying population can be
highly skewed and the sample sizes are extremely small. In addition to general
requirements, some methods (e.g. the LS method) have assumptions, such as the mean
must be normally distributed, which may not apply. As a result, methods that require
fewer assumptions about the data (¢.g., simulation-based, data-based, and non-parametric
methods) are more desirable for use in exgr( ju%tm analysis when the ex are not
"distorted” relative to reality. For example, the ED method uses data-based distributions of
the experts, and aggregates them using a simulation-based technique. The SW and EW
methods do not require distributional assumptions on the data; however, the variance
estimates of their aggregated means do rely on the same sampling asymptotic theory that the
LS method does.

All the methods require the experts to make estimates. Two require them to estimate
some measure of uncertainty/variability as well. However, the LS method requires the
decision maker or analyst to estimate three additional parameter vectors and one additional
matrix for the experts. The SW methcd also requires the experts to estimate their own
weights. Some studies have indicated that experts are not good at estimating uncertainty
(Kahneman, et al., 1982), and some have suggested that ex are not good at estimating
self weighis (or the weiglits of others) (Bernreuter, et al., 1989). There is little evidence to
predict how well the decision maker can estimate the parameters needed for the LS method.
One can only specilate that the decision maker's estimation of these parameters would not
be any more accurate than his ability to estimate variability (which studies have indicated is
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not done well). Also, the decision maker is presumably less knowledgeable than his
experts which binds his estimation ability. Therefore, any method that relies heavily on
cstimates (other than the estimates of the target quantity) is introducing additional sources
of potentially large variability. As a consequence, a "simpler is better” philosophy has
developed. This philosophy has led to the conclusion that equal weights for all experts
might be 1.2 answer. However, the results of this study do not necessarily support the use
of equal weights. While keeping additional estimations to a minimum is reasonable advice,
for analysis purposes it is better to have estimates of uncertainty on hand.

Based on these features of the methods, the conclusion is that all the methods have their
advantages (case of use, characterizing uncertainty, and accounting for correlation) and
disadvantages (restrictive assumiptions, imperfect input estimation, and poor performance
in the cases run) for use in aggregating expert judgments. The following recorumendations
summarize the results of this study, focusing on the balance between these advantages and
disadvantages. If enough information is known about the experts, and if the target quantity
of interest (failure rate) is thought to be normally or lognormally distributed, the LS method
can be used with decent results. If both of these conditions are not satisfied, then an
alternative method is the ED using the median aggregation estimator.

At the beginning of this study, we did not expe<t any one of the chosen methods to
emerge as the best If a proven  :st, method existed, it would probably have been
publicized by now. The problems encountered in analyzing expert judgments are
numerous, complicated, and frustrating. Research and practical use of proposed analysis
methods is sparse. The data itseif lacks properties necessary to support both statistical and
cognitive theory. Often the theories conflict, e.g. the data are distributed normally for the
analysis, but cognitive studies indicate non-normality. As a consequence, guidance for
handling the aggregation problem is given primarily from the theoretical side and not from
the experimental or the experience sides. In reality, there is a decision maker or analyst
who is faced with providing aggregation estimates for documentation or justification
purposes.

This study focused on a real example and the use and comparison of four different
types of methods that have received attention in the literature. This study provides insights
into lthese methods, and the decision maker or analyst can gain some guidance from the
results.
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APPENDIX - NOTATION

Q

bias parameter vector estimates in the Lindley/Singpurwalla (LS) method
parameter vector estimates in the LS method scaling the expert's estimate of the mean

parameter vecter estimates in the LS method scaling the expert's estimate of the
standard deviation.

estimate of the correlation between experts i and j

the actual value of the failure rate

the actual value of the log failure rate (-20.0)

the aggregation cstimator of 6

estimate of the variance/covariance matrix in the LS method
the correlation matrix in the LS method

standard deviation of the aggregation mean estimator.
the expert's estimate or best guess of the log failure rate
the expert's estimate of the standard deviation

the actual value of the standard deviation of the quantity being estimated
the actual value of the bias parameter in the LS method
the actual value of the standard deviation scaling parameter in the LS method

the actual value of the scaling parameter for the expert's estimate of the mean in the
LS method

the actual value of the correlation between experts
the actual value of the variance/covariance matrix in the LS method

indicates transpose of a matrix or vector
indicates a vector
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